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Abstract: Alanine scanning mutagenesis of protein–protein interfacial residues can be applied to a wide variety of

protein complexes to understand the structural and energetic characteristics of the hot-spots. Binding free energies

have been estimated with reasonable accuracy with empirical methods, such as Molecular Mechanics/Poisson-Boltz-

mann surface area (MM-PBSA), and with more rigorous computational approaches like Free Energy Perturbation

(FEP) and Thermodynamic Integration (TI). The main objective of this work is the development of an improved meth-

odological approach, with less computational cost, that predicts accurately differences in binding free energies between

the wild-type and alanine mutated complexes (DDGbinding). The method was applied to three complexes, and a mean

unsigned error of 0.80 kcal/mol was obtained in a set of 46 mutations. The computational method presented here

achieved an overall success rate of 80% and an 82% success rate in residues for which alanine mutation causes an

increase in the binding free energy > 2.0 kcal/mol (warm- and hot-spots). This fully atomistic computational methodo-

logical approach consists in a computational Molecular Dynamics simulation protocol performed in a continuum me-

dium using the Generalized Born model. A set of three different internal dielectric constants, to mimic the different

degree of relaxation of the interface when different types of amino acids are mutated for alanine, have to be used for

the proteins, depending on the type of amino acid that is mutated. This method permits a systematic scanning muta-

genesis of protein–protein interfaces and it is capable of anticipating the experimental results of mutagenesis, thus

guiding new experimental investigations.
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Introduction

A network of protein–protein interactions forms the basis of most

cellular function. Understanding of protein–protein interaction is

essential to the understanding of molecular recognition and the

physical basis of affinity. It also allows the design of new pro-

tein–protein interactions, permits one to engineer new functions

and adjust cellular behavior in a predictive manner, and enables

the rational design of new therapeutic agents.1,2

Protein association has been shown to be sensitive to muta-

tional events. Even though protein interfaces are large and com-

plex, single residues, being responsible for the majority of the

interaction energy, can still contribute significantly to the binding

free energy.3 The functional epitope, defined by the contact resi-

dues that make energetic contributions to binding, constitutes

only a small fraction of the structural epitope, defined by the pro-

tein amino acid residues in contact with a ligand. One of the bio-

logical facts that can explain this situation is the inaccessibility to

site-directed mutagenesis of the protein backbone, an important

contributor to interfaces as it represents on average about one-fifth

of the interface area and contributes nearly two-thirds of the hydro-

gen bonds.4 Another justification for the reduced size of the func-

tional epitope is that the atoms that remain partly accessible to sol-

vent constitute three-quarters of the interfaces area, and when

deleted, as in an alanine mutant, they can be replaced by water

molecules at much less cost than fully buried atoms. It has been

demonstrated that inaccessibility to the solvent is a necessary con-

dition for a residue to constitute a binding hot-spot.4–6 As a result,

the critical components in a functional epitope, the hot-spots, have

been defined as those sites where alanine mutations cause a signifi-

cant increase in the binding free energy of at least 4.0 kcal/mol,7

even though lower values are used for statistical analyses.7 Warm-

spots are those with binding free energy differences between 2.0

and 4.0 kcal/mol and null-spots are the residues with binding free

energy differences lower than 2.0 kcal/mol. Those hot-spots tend
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to be correlated with conserved residues at specific locations, and

are enriched with tryptophan, tyrosine, and arginine.8 The binding

hot-spots have been detected in numerous protein–protein interfa-

ces but are not randomly spread along them. Instead, they tend to

be in dense clusters forming a network of interactions, and contrib-

ute cooperatively to the stability of the complex.8,9

Alanine-scanning mutagenesis of protein–protein interfacial

residues, combined with structural and thermodynamic studies

have enabled the discovery of energetically important determi-

nants of specificity at intermolecular interfaces that are critical in

determining binding affinity.10 Unraveling hot-spots in binding

interfaces continues to stimulate interest, since reliable prediction

of key residues in the interface has immediate applications in pro-

tein engineering and it is an attractive alternative therapy for

many diseases (Structure Based Drug Design).11

In recent years, a number of methods to correctly identify the

hot-spots have been developed. Free Energy Perturbation (FEP)

and Thermodynamic Integration (TI) yield rigorous and accurate

free energy differences but these methods are implemented numeri-

cally; thus sufficient statistical sampling must be carried out which

makes them extremely time consuming and prevents them from

being commonly used in structure-based design.12 Simple physical

models,13,14 empirical methods,15 linear interaction energy meth-

ods,16 and Monte Carlo methods17 have been proposed to identify

the residues contributing significantly to the stability of protein

associations. A computer algorithm, FOLDEF (for FOLD-X energy

function) tested on monomeric proteins and protein complexes was

also developed.18 This method presents an error below 0.81 kcal/

mol for 70% of the mutants, and it is of significant interest for the

improvement of structure prediction methods, in particular in the

field of ab initio prediction.18

An all-atom method has been developed to probe protein–pro-

tein interactions by calculating free energies combining molecular

mechanics and continuum solvent and was named MM-PBSA

(Molecular Mechanics/Poisson-Boltzmann Surface Area) method-

ology.19–25 In this approach, the free energy of a molecule can be

written as:

Gmolecule ¼ Einternal þ Eelectrostatic þ Evdw þ Gpolar solvation

þ Gnonpolar solvation � TS ð1Þ

with the first term corresponding to the internal energy of the sol-

ute (bond, angle and dihedral), the second and the third terms to

the electrostatic and the van der Waals interactions respectively,

and the last three terms being the polar free energy of solvation,

the nonpolar free energy of solvation and the entropic contribu-

tion for the solute free energy. To simulate solvation effects on

biological macromolecules, both explicit and implicit solvent

models have been developed offering a varying degree of micro-

scopic detail in exchange for computational efficiency.26 Explicit

solvation representation, where a biological molecule is embed-

ded in a large number of solvent molecules, is detailed but it is in

general very time consuming and computationally demanding

because periodic boundary conditions are usually necessary.27

Alternatively, the discrete water molecules can be replaced by an

infinite continuum medium with the dielectric properties of

water.28 The implicit solvent model has become an increasingly

popular technique because it is an approach computationally much

more affordable, while still providing a reasonable description of an

aqueous solvent environment. Moreover, discrete methods do not

allow the calculation of free energy of polar solvation (DGsolvation),

which can only be estimated with continuum models.

These algorithms of varied complexity can be divided essentially

into two main types: empirical functions or simple physical methods

that use experimentally calibrated knowledge-based simplified mod-

els to evaluate the binding free energy, and versatile/universal fully

atomistic methods that estimate the free energy of association or

changes in the binding free energies as a result of mutating the resi-

dues of the interacting molecules based only in the respective Ham-

iltonians.19 The two types of methods have each specific advantages

and limitations. An equilibrium must be achieved between the use

of simple algorithms that permit fast calculations and the inclusion,

conservation, and consideration of the important atomic detail of

biomolecules.2 Consequently, when deciding on the computational

approach for predicting the binding free energies, it is important to

foresee the computational time required, without forgetting that

sometimes it is affordable and advantageous to carry out more accu-

rate time-consuming calculations because an atomic-detail descrip-

tion of biomolecules is often important in elucidating their structures

and functions.3 In summary, although it is correct that empirical

models can presently be as accurate as fully atomistic models, and

computationally faster, they suffer from a number of limitations that

make them inadequate to a significant number of biological com-

plexes,14 and more limited in terms of further development. In this

context, it still makes sense to continue to study and improve fully

atomistic models, which give more detailed information, have a

broader application field, and can be systematically improved by

inclusion of more exact Hamiltonians and longer simulation times.

This is trivial from a methodological point of view, limited only by

the actual state of computer technology.

Since the last decade, an effort has been made in achieving an

accurate, predictive methodology for alanine scanning mutagene-

sis, capable of reproducing the experimental mutagenesis values.

Until now the results from atomic level methodologies have nei-

ther presented the precision nor the accuracy to achieve the

‘‘chemical accuracy,’’ which is *1 kcal/mol. Chemical accuracy

is traditionally used as a standard for good agreement between the-

oretical and experimental results since it is sufficient to describe

van der Waals interactions, the weakest interaction considered to

affect chemistry.

The success rates have been rather modest so far. The alanine

mutation of charged amino acids (aspartic acid, glutamic acid, ly-

sine, arginine, and histidine) generates mainly values in disagree-

ment with the experimental ones, and the computational time

involved is much too high to permit a systematic mutagenesis of

protein–protein interfaces.19–25 However, the experimental system-

atic scanning mutagenesis of protein–protein interfaces even

though more exact is also more difficult to perform because it is a

very expensive and time consuming methodology. Thus, a compu-

tational approach represents an excellent compromise between ac-

curacy and time necessary to reach the binding free energy differ-

ences (DDGbinding).

The main objective of this work is the development of an im-

proved methodological approach, with less computational cost and

high success rate that reproduces the quantitative free energy differen-
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ces obtained from experimental mutagenesis procedures. This compu-

tational method is transferable to any macromolecular complex and is

a predictive model capable of anticipating the experimental results of

mutagenesis, thus guiding new experimental investigations.

Computational Details

Model Setup

The structures considered here are three protein–protein com-

plexes. The crystallographic structures with a resolution of 1.95

Å, 3.50 Å, and 1.80 Å respectively were taken from the RCSB

Protein Data Bank with PDB entries: 1F47,29 1Fcc30 and 1Vfb.31

They are complexes that mediate bacterial cell division (1F47), a

human immunoglobulin IgG complexed with the C2 fragment of

streptococcal protein G (1Fcc), and an immunoglobulin com-

plexed with a Hen Egg lysozyme (1Vfb).

All molecular mechanics simulations presented in this work

were performed using the sander module, implemented in the

Amber832 simulations package, with the Cornell force field.33 In

the molecular simulations the solvent was modeled through a modi-

fied Generalized Born solvation model.34 The system was first

minimized by 1000 steps of steepest decent followed by 1000 steps

of conjugated gradient to release the bad contacts in the crystallo-

graphic structure. Subsequently, molecular dynamics (MD) simula-

tions were performed starting from the minimized structures. Bond

lengths involving hydrogens were constrained using the SHAKE

algorithm.35 The equations of motion were integrated with a 2-fs

time-step and the nonbonded interactions were truncated with a

16 Å cutoff. The temperature of the system was regulated by the

Langevin thermostat.36–38 The total simulation time was 3000 ps for

the 1fcc and 1vfb complexes, and 4000 ps for the 1f47 complex.

The MM-PBSA script25 implemented in Amber832 was used

to calculate the binding free energies for the complex and for the

alanine mutants. To generate the structure of the mutant complex

a simple truncation of the mutated side chain was made, replacing

C� with a hydrogen atom, and setting the C���H bond direction

to that of the former C���C�. For the binding free energy calcu-

lations, a total of 25 snapshots of the complexes were extracted,

one every 20 ps in the last 500 ps of the run.

Alanine Scanning Mutagenesis

In this paper we present a new and improved methodological

approach, based in the MM-PBSA protocol. In MM-PBSA, the

complexation free energy is calculated using the following ther-

modynamic cycle:

Here, DGgas is the interaction free energy between the ligand

and the receptor in the gas phase and DGlig
solv, DG

rec
solv, and

DGcpx
solv are the solvation free energies of the ligand, the recep-

tor, and the complex respectively. The binding free energy differ-

ence between the mutant and wild type complexes is defined as:

��Gbinding ¼ �Gbinding-mutant ��Gbinding-wild type (2)

The binding free energy of two molecules is the difference

between the free energy of the complex and that of the respective

monomers (the receptor and the ligand).

�Gbinding-molecule ¼ Gcomplex � ðGreceptor þ GligandÞ (3)

Typical contributions to the free energy of binding include the

internal energy (bond, angle and dihedral), the electrostatic and

the van der Waals interactions, the free energy of polar solvation,

the free energy of nonpolar salvation, and the entropic contri-

bution for the molecule free energy, as given by eq. (1). The first

three terms were calculated using the Cornell force field33 with no

cutoff. The electrostatic solvation free energy was calculated by

solving the Poisson-Boltzmann equation with the software Delphi

v.4.39,40 In this continuum method, the protein is modeled as a

dielectric continuum of low polarizability embedded in a dielectric

medium of high polarizability. We used a scale (the reciprocal of

the grid spacing) of 2.5 grids/Å, a convergence criterion of 0.001

kT/e (the maximum change in potential should be <0.001 kT/e)

and the molecule filled 90% of the grid box. Potentials at the

boundaries of the finite-difference grid were set using the coulom-

bic method (based in the sum of the Debye-Huckel potentials gen-

erated by all the charges). The dielectric boundary is taken as the

molecular surface defined by a 1.4 Å probe sphere and by spheres

centred on each atom with radii taken from the PARSE41 vdW

radii parameter set. Standard parm94 charges33 were used in order

to be consistent with the energetic of the simulations we are ana-

lyzing. These parameters have been shown in an earlier work to

constitute a good compromise between accuracy and computing

time.42 For the energy calculations three internal dielectric con-

stant values, exclusively characteristic of the mutated amino acid,

were used: 2 for the nonpolar amino acids, 3 for the polar residues

and 4 for the charged amino acids The nonpolar contribution to

solvation free energy due to van der Waals interactions between

the solute and the solvent and cavity formation was modeled as a

term that is dependent on the solvent accessible surface area of the

molecule. It was estimated using an empirical relation: DEnonpolar

¼ o •A + b, where A is the solvent-accessible surface area that was

estimated using the molsurf program, which is based on the idea

primarily developed by Mike Connolly.43 o• and b are empirical

constants and the values used were 0.00542 kcal/(Å2 mol) and

0.92 kcal/mol respectively. The entropy term obtained as the sum

of translational, rotational, and vibrational components was not

calculated because it was assumed, based in previous work, that

its contribution to DDGbinding is negligible.
25

The apparent dissociation constant for each alanine mutant

was estimated from the concentration required for 50% inhibition

(IC50). The IC50 values were used to calculate the experimental

binding free energies differences using the following relationship:Thermodynamic cycle used to calculate the complexation free energy.
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DDGbinding ¼ RTln(IC50 mutant/IC50 wild-type), where R is the

ideal gas constant and T is the temperature in K.

Results

Alanine scanning mutagenesis of protein–protein interfacial resi-

dues is a very important process for rational drug design.4,44,45

Therefore, it is necessary to develop a faster and more reliable

computational method to predict the binding affinities of the

ligands. Some methods have been developed but they do not pres-

ent the necessary accuracy. The MM-PBSA method by Massova/

Kollman is a fully atomistic method that, although not accurate

enough in the original implementation, opened the possibility for

the development of a new improved methodology.

We began our work by studying the influence of different com-

putational simulation protocols on DDGbinding. Initially we have

tried different types of simulations (minimization or dynamics),

different solvent representations (explicit or implicit), and different

internal dielectric constants for the proteins. Subsequently, we

have tried protocols with a different number of dynamic simulation

trajectories. The first protocol is a ‘‘single mutation protocol’’25

consisting in optimizing or running a molecular mechanics simula-

tion with only the wild-type structures and subjecting them to a

post-processing treatment to generate the mutant complexes by a

simple truncation of the side chain of the residue we wish to

mutate, replacing the C� with a hydrogen atom. The monomer

structures were generated from the structure of the wild-type and

the mutant complexes by deletion of the other partner in the pro-

tein–protein complex. Consequently, the free energy of the wild-

type and mutant monomers and the mutant complexes are calcu-

lated without rearrangement of the surrounding environment. We

have also tried a ‘‘two mutation protocol’’ based on running two

separate trajectories or optimizing the geometry for the wild type

and the mutant. The free energy of the monomers is calculated

without optimizing or running MD with these structures, and there-

fore making only a single energy point calculation. Finally, we

have tried a ‘‘fourth mutation protocol’’ by optimizing the wild-

type, the mutant complex, the wild-type monomer and the mutant

monomer. As one of the monomers was not subjected to mutation,

a MD simulation was not performed. This monomer has its effect

cancelled in eq. (4).

��Gbinding ¼ ðGcomplex-mutant � Gcomplex-wild typeÞ
� ðGligand-mutant � Gligand-wild typeÞ
� ðGreceptor-wild type � Greceptor-wild typeÞ ð4Þ

As can be perceived from the first mutation protocol to the last,

there is a passage from 1 MD/system to 1 MD/mutation leading

to a simulation time proportional to the mutation number and

therefore increasing the CPU cost to enormous values. As the

dielectric constant of a protein (e) is not a universal parameter,

and values from 1 to 4 (and even higher) are commonly used, we

have calculated DDGbinding with dielectric constants from 1 to 5,

and with the solvent described by explicit water molecules (as the

Massova/Kollman method implies). Our initial objective was to

predict binding affinities within an accuracy of 1 order of magni-

tude, which corresponds to 1.36 kcal/mol at room temperature,

and 1.42 kcal/mol at physiological temperature. Subsequently, we

have noticed that all residues that obey such criteria have absolute

errors slightly smaller, within 1.3 kcal/mol, and introduced this

last value as a success rate indicator.

The results given by this methodology were not very satisfac-

tory (overall success rates of 44% using e ¼ 1, 62% using e ¼ 2,

60% using e ¼ 3, 63% using e ¼ 4, and 58% using e ¼ 5, lower

if we only consider the warm-spots and hot-spots).

Eventually we developed and settled on a new and improved

methodological approach, based in the MM-PBSA protocol,

which we present here. The three proteins studied have different

dimensions and properties and Figures 1a–1c show representa-

tions of these complexes highlighting the hot-spots present in

each one. From the complex present in Figure 1a to the one pres-

ent in Figure 1b there is an increase in size (from 159 to 262 resi-

dues). The one in Figure 1c was chosen because it has a substan-

tially different architecture, being formed by three distinct chains,

a heavy and light chain that constitute the receptor, and a third

chain that constitutes the ligand.

We have found that the use of a single trajectory to calculate

DDGbinding is conducive to a much better agreement with the exper-

imental data than the use of multiple trajectories. It is supposed that

by using a single trajectory, error cancellation will overcome the

insufficient sampling of the conformational space.25,46 Therefore,

the use of multiple trajectories is only benefited if very long trajec-

tories can be generated, something that is not feasible presently,

even with modern computational resources. Thus, a single trajec-

tory of the wild-type complexes was run and post-processed to

obtain DDGbinding. The corresponding MD were performed in an in-

finite continuum medium with the dielectric properties of water

using the Generalized Born solvation model. The preference for

this type of solvent representation over the explicit water represen-

tation can be justified by several reasons, namely the smaller simu-

lation time necessary compared to those of the explicit solvent

methods, the more complete exploration of the conformational space

due to the lack of the viscous damping forces of the water, the

reduced lengthy equilibration of water compared to that of the

explicit water simulation, and an easier interpretation of the results

since the water degrees of freedom are absent.47 The continuum sol-

vent is used to calculate the DGsolvation value, and therefore it is co-

herent to use the same method to generate the dynamic trajectories.

To obtain reliable estimates of the relative binding energy, the

average total energy value (total energy ¼ potential energy + ki-

netic energy) must converge. Figures 2a–2c respectively show these

average total energy values for all of the 3 complexes studied. The

total energy remaining constant indicates that we have reached

equilibrium. Although for the 1Vfb and 1Fcc complexes, the sys-

tems are well equilibrated after 1500 ps of MD simulation, for the

1F47 complex equilibration was only achieved after 2000 ps. This

can be explained by the reduced size of this complex (159 amino

acids) and the high mobility of the ligand which consists of only 15

amino acids. Its flexibility gives rise to higher root-mean-square

deviation (RMSD) values after 2 ns, due to a localized conforma-

tional transition corresponding to a slight opening of the end of the

second turn of the FtsZ �-helix, which anyway lies beyond the

region where the binding determinants are located. However, calcu-

lation of the RMSD restricted to the interface region shows a stable
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trend around 2 Å until the end of the simulation. For the processing

analysis the last 500 ps of the trajectories were selected. In Figures

3a–3c we have plotted the time series of RMSD from the X-ray

crystal structure of C� atoms of the complex and the respective sep-

arate proteins for the three simulations. After equilibration, the sys-

tems are very stable and the RMSD of the main chain reaches a

maximum of 2.0–3.5 Å. This value is much smaller if we did con-

sider only the separate monomers.

Figure 1. (a) Complex formed between the bacterial cell-division protein ZipA and the FtsZ fragment

highlighting the mutated residues by a ball and stick representation; (b) complex formed between the

human immunoglobulin IgG and the C2 fragment of streptococcal protein G highlighting the mutated

residues by a ball-and-stick representation; (c) complex formed between an immunoglobulin and a hen

egg lysozyme highlighting the mutated residues by a ball and stick representation. In yellow are repre-

sented the null-spots (relative binding energy < 2.0 kcal/mol), in orange the warm-spots (relative bind-

ing energy between 2.0 and 4.0 kcal/mol), and in red the hot-spots (residues with a relative binding

energy higher than 4.0 kcal/mol).
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One of the fundamental limitations of the current approaches to

calculate the relative binding free energy is the small success rate

when charged residues are involved. Since hot-spots are enriched

with this kind of residues, it becomes a huge problem that it is nec-

essary to solve. We have studied several ways to deal with this

problem. Our attention was captured by one empirical parameter

used in the numerical differentiation of the Poisson-Boltzmann

equation as implemented in DelPhi to calculate the free energy of

polar solvation: the internal dielectric constant.

Proteins are complex molecules containing a mixture of neu-

tral, polar, and charged amino acids. While the choice of the

external dielectric constant depends on the solvent media, the

choice of the internal dielectric constant has been the subject of

discussion and controversy because the dielectric constant is not a

universal constant but simply a parameter that depends on the

model and the methodology used.26,48,49 The internal dielectric

constant is a means of accounting for responses to an electric field

that are not treated explicitly.48 This response depends on the con-

stituting amino acid residues, and therefore different protein

regions should have different internal dielectric constants. In the

absence of these limitations, an internal dielectric constant of 1

should be used. However, it is necessary to use a dielectric con-

stant of at least 2, because the induced dipoles are not included ex-

plicitly.50 As already established, when group reorientation is im-

portant and is not included explicitly in the formalism (due to

insufficient sampling of the conformational space), the dielectric

Figure 2. Total energy values as a function of simulation time for the last 500 ps of the dynamic simula-

tion for the complex formed between (a) the bacterial cell-division protein ZipA and the FtsZ fragment;

(b) the human immunoglobulin IgG and the C2 fragment of streptococcal protein G; and (c) an immuno-

globulin and a hen egg lysozyme.
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constant of the solute should be raised to values from 2 to 4 or

higher.26,51,52

To evaluate the influence of the value of the dielectric con-

stant we calculated the DDGbinding values for all studied residues

with dielectric constants ranging from 1 to 5, and analyzed the

unsigned deviation between the calculated and the experimental

DDGbinding values for each of the five internal dielectric constant

values. The results are shown in Table 1. From perusal of Table 1

it can be perceived that the value of the dielectric constant that

better mimics the experimental values is not universal; instead it

increases with the polarity of the residues, being 2 for nonpolar

residues, 3 for polar residues, and 4 for charged residues.

Thus, we present here a new idea: the use of different internal

dielectric constants for different mutations with values dependent

on the type of amino acid, which was mutated to an alanine.

There are 20 alpha amino acids commonly found in proteins

and they can be divided into basically four groups according to

the structure of the side chain: nonpolar and neutral (valine, ala-

nine, leucine, isoleucine, phenylalanine, proline, glycine, methio-

nine, and tryptophan), polar and neutral (aspargine, glutamine,

cysteine, tyrosine, serine, and threonine), acidic and charged (as-

partic acid and glutamic acid), and basic and charged (lysine, ar-

ginine, and histidine). As histidine can be uncharged or charged

at physiological pH we have grouped this residue with lysine and

arginine at the basic and charged amino acids.

Recalling that we used only one trajectory for the computa-

tional energy analyses, it is important to highlight that side chain

reorientation is not included explicitly in the formalism. As amino

acid polarity increases, the structural effect beyond the neighbor

residues also increases, and the conformational reorganization af-

ter alanine mutagenesis should be more extensive. This reorgan-

ization is not explicitly taken into account in the single trajectory

protocols but its effect can be implicitly included by raising the

internal dielectric constant. It is not possible to know the correct

internal dielectric constant value that should be used because it

depends on the mutated amino acid and the interacting residues.

Nevertheless, we have noticed that by using only a three-internal-

dielectric-constant set exclusively characteristic of the mutated

amino acid (2 for the nonpolar amino acids, 3 for the polar resi-

dues, and 4 for the charged amino acids), it was possible to obtain

an excellent agreement with the experimental results for the

DDGbinding values. This fact appears to indicate that the organiza-

tion level of the neighbor residues of the mutated amino acid

depends essentially of the amino acid mutated, and does not

depend on the nature of the interacting residues. A possible expla-

nation is that an amino acid present in the interface is usually sur-

rounded by residues of the other protein with the same polarity.

Analysis of protein–protein interfaces show that this complemen-

tarity between the individual molecules is a very important factor

for the binding. Therefore, the nature of the mutated amino acid

is usually representative of the nature of the surrounding environ-

ment. Furthermore, this effect can be mimicked by a single mac-

roscopic parameter, the internal dielectric constant.

This approach is supported by other studies like the one per-

formed by Wisz and Hellinga (2003),53 that applied different in-

ternal dielectric values to the analysis of the pKa values of ioniz-

able groups. They also noticed that multiple, geometry-dependent

dielectric constants assigned separately for each pairwise interac-

tion and determined by location of the two charges relative to the

solvent, by the local environment, by the type of interaction

between relevant amino acid side chains should be used to mimic

the relaxation effects.53

Although called an amino acid, proline is in fact an imino

acid. When proline is in a peptide bond, it does not have a hydro-

gen on the � amino group, so it cannot donate a hydrogen bond

to stabilize an � helix or a � sheet. Unlike other amino acids that

exist almost exclusively in the trans- form in polypeptides, pro-

line can exist in the cis- configuration in peptides. The proline

backbone conformation is significantly different from the one

from alanine, and even though the ring is not reactive, it does

restrict the geometry of the backbone chain in any protein where

it is present. For example, when proline is found in an � helix,

the helix will have a slight bend due to the lack of the hydrogen

bond. Proline mutations to alanine were not considered here

because this type of mutation is disruptive, can produce some-

times abnormal changes to the binding as a result of significant

conformational changes, and therefore would masquerade the

results.

We have accomplished a method that gives a high success

rate. This method has been applied to 46 mutations in 3 com-

plexes and the results are shown in Table 1. If we consider a devi-

ation of 61.3 kcal/mol from the experimental value as an accu-

rate result, we can observe from Table 1 that we have an overall

success rate of 80%, an 80% success rate for the null-spots, a

78% achievement of the correct relative binding free energy of

the warm-spots, and an 82% success rate concerning the residues

with a DDGbinding higher than 2 kcal/mol. It can also be observed

that there is only 5% of false positives in the hot-spot detection,

and that the residues responsible are warm-spots with DDGbinding

between 2 and 4 kcal/mol. Although the data set used here has

only two hot-spots, it is important to highlight that these residues

were correctly identified especially because other computational

methods tend to have a lower success rate for these kind of resi-

dues. It is difficult to estimate how accurate the method is in esti-

mating binding spots with DDGbind higher than 4 kcal/mol. The

problem with the hot-spots (within the >4kcal/mol definition) is

that they are rare, and an impractically large number of systems

should be simulated to get a very accurate picture. Moreover, the

absolute value for DDGbind in hot-spots is usually not available

experimentally, and usually only lower limits can be found in the

literature, which does not allow for the evaluation of the absolute

error in the computational calculation, and therefore the agreement

is made only in a qualitative perspective. Nevertheless, we should

Table 1. Absolute Deviation Error (Dev) for the DDGbinding of the

Different Amino Acid Types.a

Residue type

Internal dieletric constant

e ¼ 1 e ¼ 2 e ¼ 3 e ¼ 4 e ¼ 5

Nonpolar 3.08 0.52 1.18 1.51 1.78

Polar 3.78 1.07 0.78 0.92 1.22

Charged (plus His) 3.63 1.61 1.07 0.92 1.08

aDev ¼ h| DDGbinding (calculated) � DDGbinding (experimental) |i.
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Table 2. Results of the Methodological Approach for Computational Alanine

Screening Mutagenesis.a

Residue type Protein Mutation %Burial DDGexp DDGcalculated

Nonpolar 1F47 Leu4Ala 91.3 0.92 1.01

Ile6Ala 97.5 2.50 2.42

Phe9Ala 95.7 2.44 2.48

Leu10Ala 94.2 2.29 2.73

1Fcc Trp43Ala 97.6 3.80 �0.72

1Vfb-L chain Trp92Ala 90.3 1.71 2.37

1Vfb H chain Trp52Ala 96.3 1.23 1.25

1Vfb-ligand Val120Ala 98.6 0.90 0.84

Leu129Ala 78.1 0.20 0.00

Ile124Ala 98.5 1.20 0.56

Polar 1F47 Tyr3Ala 81.1 0.86 3.20

1Fcc Thr25Ala 90.3 0.24 0.01

Asn35Ala 88.5 2.40 1.23

Thr44Ala 76.4 2.00 2.24

Tyr45Ala 87.2

1Vfb-L chain Ser93Ala 84.5 0.11 �0.22

Tyr32Ala 98.0 1.30 1.70

Tyr49Ala 93.0 0.80 �0.32

Tyr50Ala 91.1 0.40 0.91

Thr53Ala 86.4 �0.23 �0.19

1Vfb-H chain Thr30Ala 70.7 0.09 0.29

Tyr32Ala 91.5 0.50 2.75

Tyr101Ala 97.3 >4.0 3.61

Asn56Ala 65.7 0.20 0.47

1Vfb-ligand Ser24Ala 98.4 0.70 2.23

Tyr23Ala 97.6 0.80 2.45

Thr118Ala 86.9 0.80 1.07

Asn19Ala 89.3 0.40 0.21

Gln121Ala 99.9 2.90 3.49

Charged 1F47 Asp2Ala 63.0 0.69 0.16

Asp5Ala 78.8 1.73 �0.64

Arg11Ala 54.3 0 1.08

Lys12Ala 55.0 0 1.01

1Fcc Glu27Ala 99.8 >4.90 8.70

Lys28Ala 97.2 1.30 3.30

Lys31Ala 99.3 3.50 4.78

Asp40Ala 72.7 0.30 �0.13

Glu42Ala 67.0 0.40 �0.07

1Vfb-L chain His30Ala 83.5 0.80 2.10

1vfb-H chain Asp58Ala 83.5 �0.20 0.93

Glu98Ala 98.0 1.10 1.31

Arg99Ala 82.3 0.47 �0.82

Asp100Ala 87.5 3.10 5.20

1Vfb-ligand Asp18Ala 87.8 0.30 1.92

Lys116Ala 83.6 0.70 1.62

Asp119Ala 86.1 1.00 1.92

Arg125Ala 80.3 1.80 2.03

Success rate (%) null-spots 80

warm-spots 78

hot-spots 100

Overall 80

aThe units of free energies and potential energies are kcal/mol. The burial percentage of each mu-

tant residue including backbone atoms upon binding is according to:

%Burial ¼ 100� Areacomplex

Areaunbound
� 100:
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stress that the 4 kcal/mol value is not universal. Thus, many

authors1,6,9 have used a cutoff of 2 kcal/mol to define a hot-spot.

Within that criterion the method has a success rate of 82%.

The standard deviation of the mean for DDGbinding ranges

from 0.64 to 0.98 kcal/mol for all the 46 mutations analyzed. As

mentioned previously, the method was applied to three com-

plexes, and a mean and maximum unsigned error of 0.80 and

4.52 kcal/mol was obtained in a set of 46 mutations. It is impor-

tant to stress that the systems analyzed are diverse (three proteins

with different characteristics and sizes) and the universe of muta-

tions studied is substantial. The calculated effects of mutating the

10 uncharged residues are in good agreement with the experimen-

tal mutagenesis values as can be observed from Table2. We

have also obtained an excellent agreement with the experimental

values of the relative binding free energy upon mutation, for the

nineteen polar and seventeen charged residues, the most challeng-

ing ones because their mutation usually results in errors by over

4–10 kcal/mol.24,25

The causes for the deviations obtained in this work can be sev-

eral, ranging from inherent inaccuracies of the force field, lack of

explicit atomic polarization, incomplete exploration of the side-

chain rotamer conformational space and the use of a single trajec-

tory protocol. The last three sources of uncertainty have been im-

plicitly corrected in an average way through the consideration of

different dielectric constants for different amino acids. This is

indeed the conceptual backbone of the methodology. However,

the microenvironment around each amino acid varies substan-

tially, and therefore there will always be some situations which

deviate from the average, and that cannot be perfectly corrected

through an empirical parameter calibrated to reflect the most

common scenarios.

Conclusions

In the present study, we have improved the strategy originally

proposed by Massova/Kollman25 to predict the binding affinities

of the ligands. The use of the molecular mechanics AMBER1994

force field (Cornell et al.33) and a continuum solvation approach

with different internal dielectric constant values for different

kinds of residues allowed the identification of the hot-spots at

protein–protein interfaces with a high success rate.

This fully atomistic computational methodological approach

consists in using computational MD simulations with a single trajec-

tory protocol. These simulations are performed in an infinite contin-

uum medium with the dielectric properties of water using the Gener-

alized Born solvation model, and a post-processing treatment of the

complex permits to calculate the respective energies for the complex

and all interacting monomers from the wild-type structure. A set of

different internal dielectric constants has to be used for the proteins,

depending on the type of amino acid that is mutated. Therefore, for

the charged amino acids (aspartic acid, glutamic acid, lysine, argi-

nine, and histidine) a constant of 4 should be used, for the remaining

polar residues (aspargine, glutamine, cysteine, tyrosine, serine, and

threonine) not ionized at physiological pH the internal dielectric

constant should be 3, and for the nonpolar amino acids (valine, leu-

cine, isoleucine, phenylalanine, methionine, and tryptophan) the in-

ternal dielectric constant should be 2. The different internal dielec-

tric constants account for the different degree of relaxation of the

interface when different types of amino acids are mutated for ala-

nine; the stronger the interactions these amino acids establish, the

more extensive the relaxation should be, and the greater the internal

dielectric constant value must be to mimic these effects.

This methodological approach summarized in Scheme 1 gives

an overall success rate of 80%, an 80% success rate for the null-

spots, 78% achievement of the correct relative binding free

energy differences between the wild-type and mutant complexes

of the warm-spots, and an 82% rate of success for residues with a

DDGbinding higher than 2 kcal/mol.

The standard deviation of the mean, defined as �=
ffiffiffi

n
p

, where

n is the number of snapshots, ranges from 0.64 to 0.98 kcal/mol;

thus ‘‘chemical accuracy’’ was achieved. The method was applied

to three complexes, and a mean and maximum unsigned error of

0.80 and 4.52 kcal/mol was obtained in a set of 46 mutations.

Scheme 1. Resume of the methodological approach for computational alanine screening mutagenesis.

653Computational Alanine Scanning Mutagenesis—An Improved Methodological Approach

Journal of Computational Chemistry DOI 10.1002/jcc



This method is simple, fast, has a low computational cost, and

can be applied to a wide range of proteins providing a correct

anatomic image of an interface. It can be used prior to an experi-

mental investigation helping in the hot-spot detection and the

choice of the amino acids to mutate.
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